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Let K be a compact subset of Rm with K = int K. Necessary conditions on an n­
dimensional subspace Un of C(K) are given so that for each f E C(K) there exists a
unique best V(w)-approximation from Un' for every fixed positive weight function
w. (G) 1988 Academic Press, Inc.

1. NOTATION AND DEFINITIONS

Let K be a compact subset of R m
. For convenience we assume that

K = int K. W will denote the set of bounded, integrable functions on K for
which inf{w(x):xeK} >0, and W the set of strictly positive continuous
functions on K. By C(K) we mean the set of real-valued continuous
functions with domain of definition K. Un will always denote an n-dimen­
sional subspace of C(K). For WE W, the LI(w)-norm ofIE C(K) is defined
by

11/1Iw= f I/(x)1 w(x)dx.
K

DEFINITION 1. We say that Un is a unicity space lor w, WE W, if to each
IE C(K) there exists a unique best approximation to I from Un in the
L I (w )-norm. Similarly we say that Un is a unicity space for W (W) if Un is a
unicity space for w for all WE W (w E W).

DEFINITION 2. For each fEC(K), we set Z(f)= {x:f(x)=O}.
Similarly, for a set P<;; C(K), we set Z(P) = {x: I(x) = 0 for all IE F}.

DEFINITION 3. For a relatively open subset D of K, we denote by IDI
the number (possibly infinite but countable) of the connected components
of D. For given UEUn , we set M(u)=IKjZ(u)l. We fix an order on the
connected components Ai = Ai(u) of KjZ(u), and set KjZ(u) = Uf!,,(~) Ai'
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DEFINITION 4. Un is said to satisfy Property A if for each UE Un/{O}
and every choice of f.;E {-I, I}, i= 1, ..., M(u), there exists a VE Un/{O}
satisfying

(a) v(x)=O a.e. on Z(u),

(b) f.;v(x);;::O, xEA;, i= 1, ..., M(u).

DEFINITION 5. For u* E Un/{O}, we define

U(U*)= {u: UE Un' u(x)=O a.e. on Z(u*)}.

DEFINITION 6. Un is said to decompose on K if there exist disjoint sub­
spaces V" W ll _ r of Un of dimension rand n - r, respectively, 1~ r ~ n - 1
(Vr n Wn _ r = {O}) and disjoint subsets Band C of K such that each
element of Vr vanishes identically off B, and each element of Wn _ r vanishes
identically off C.

2. INTRODUCTION

A classic result of approximation theory is that of Haar [2]. Haar's
theorem characterizes those subspaces Un of C(B), B compact Hausdorff,
for which there exists a unique best approximation to each f E C(B) from
Un in the uniform norm. It is natural to consider this same problem in the
L L(w )-norm setting for given WE W. That is, one searches for necessary and
sufficient conditions on Un such that Un is a unicity space for w. One
would, of course, like these conditions to be both easily verifiable and
intrinsic for given Un' Necessary and sufficient conditions were given by
Cheney and Wulbert [1], and different (equivalent) conditions were also
given by Strauss [11]. Unfortunately these conditions are not at all easily
verifiable. One reason for this fact is that the criteria turn out to be weight
function (i.e., w) dependent. This is in sharp contrast to the analogous
problem in the uniform norm, where the necessary and sufficient conditions
as elucidated by Haar are identical if we approximate using any weighted
uniform norm with weight It' E W.

It is therefore natural to ask for conditions on Un which are equivalent
to the demand that Un be a uniticity space for W (W). A first result in this
direction was obtained by Havinson [3] in the case K = [a, b] cR. Havin­
son proved that if Un has the property that no UE Unl {O} vanishes on a
subinterval of [a, b], then Un is a unicity space for W if and only if Un is a
T-system on (a, b). (The "if' direction is a classic result proven earlier by
Krein [4].)

On the basis of work of Strauss [12], Property A was formulated.
Strauss showed, for K = [a, b], that if Un satisfies Property A, then Un is a
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unicity space for W. This result has been generalized to any K as above. In
fact, however, these two conditions are equivalent, as has been shown by
Kroo [6] and Sommer [9]. (Actually Kroo's result holds in a much more
general setting.)

THEOREM A (Kroo [6] and Sommer [9]). For KcRm
, K compact,

K = int K, Un is a unicity space for W if and only if Un satisfies Property A.

One may relax the condition that Un be a unicity space for W to the con­
dition that Un be a unicity space for W if one imposes a further condition
on Un' namely, meas{Z(u)}=meas{intZ(u)} for all UEUn. Theorem A
was originally proved for K= [a, b] by Kroo in [5]. Independently, the
first author in [8] proved this result, with K = [a, b], for W, where the
above additional assumption is imposed on Un. Theorem A for K c Rm is a
direct generalization of these results.

The verification of Property A for a given subspace Un is not a simple
problem. In the case K = [a, b], the first author went on to obtain more
intrinsic conditions on Un which explicitly characterize all those subspaces
Un which satisfies Property A. He showed that Un satisfies Property A if
and only if it is a "spline-like" space. The explicit conditions are somewhat
lengthy to state and may be found in [8]. However, two main results
deserve special mention.

THEOREM B (Pinkus [8]). For K=[a,b], Un satisfies PropertyA if
and only if

I[a, b]/Z(u)1 :::;;dim U(u)

for each u E Un.

The "only if' part is explicitly stated in [8] as Theorem 4.7. The "if' part
is essentially proved, but never explicitly stated. The second result is the
following.

THEOREM C (Pinkus [8]). Let K= [a, b], and assume Un satisfies
Proper(v A. If I[a, b]/Z(Un)l:;:: 2, then Un decomposes.

To be more precise, it follows from TheoremC that if [a,b]/Z(Un)=
U~~l Ai, where the {Ai}; are the relatively open connected components of
[a, b]/Z( Un), then dim Unl A, = ni , i = 1, ..., r; 1:::;; ni ; L~~ 1 n; = n, and there
exists a basis for Un IA, all of whose elements vanish identically off A;.
Furthermore, by definition, UnI A , satisfies Property A on Ai' i= 1, ..., r.
Thus, as is easily seen, our problem reduces to r independent problems, i.e.,
Un satisfies Property A on K if and only if Unl A, satisfies Property A on A;
for each i = 1, ... , r. The best approximation problem reduces to r indepen­
dent approximation problems.
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We wish to generalize Theorems Band C to the multidimensional
setting. However, only one direction of Theorem B is valid in more
than one dimension. To verify this, consider Uz= span {x, y}, and
K=[-I,I]x[-I,l]. For each uEUzj{O}, IKjZ(u)I=2=dimU(u).
However, there exists no non-negative, non-trivial function in Uz. Thus Uz
does not satisfy Property A. Nonetheless, we will prove the following
results.

THEOREM D. Let K c R m
, compact, K = int K. If Un satisfies Property A,

then

IKjZ(u)1 ~ dim U(u)

for each u E Un'

THEOREM E. Let K be as above, and let Un salisfv Property A. If
IKjZ( Un)1 ~ 2, then Un decomposes.

Theorem 0 is a generalization of Theorem 4.7 of [8]. The proof of
Theorem 4.7, as given therein, is lengthy and arduous. A simpler proof,
which is, however, also only valid for K c R, has been constructed by Som­
mer, based on the fact that Un satisfying Property A must be a WT-system.
The proof given here of Theorem 0 is essentially simpler than the proof in
[8] and of course more general than either of these other proofs. Note also
that Theorem E together with the results of [8] totally solves the problem
of characterizing unicity spaces Un for W where K is a subset of R (and not
necessarily one closed interval) by reducing it to distinct problems on
closed intervals.

As a result of Mairhuber's theorem [7], it is known that if Un is a
unicity space in the uniform norm on C(K), and n> 1, then K is essentially
a subset of R. Thus is no longer true in the situation under consideration.
Many examples exist of unicity spaces for W with K c R m

, m> 1. Perhaps
the most interesting example so far constructed is that, due to Som­
mer [10], of certain subspaces of bivariate linear splines in R Z

• However,
unlike the case where K c R, an intrinsic characterization of unicity spaces
in C(K) for K c R m

, as above, is a problem yet unresolved.

3. PROOF OF THEOREM 0

Our proof is via induction on n. For n = 1, the theorem is obvious. Note
that if Un satisfies Property A and u E Un' then U(u) also satisfies Proper­
ty A. Thus if dim U(u) < n, then by the induction hypothesis we may
assume that our results holds for such u. We therefore assume that there
exists a u E Un with M(u) > n and will eventually arrive at a contradiction.
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For convenience, our proof of Theorem D is divided into a series of
lemmas.

LEMMA 1. Let UE Un/{O}, and K/Z(u) =U~ 1 Ai as in Definition 3 (M
may be infinite). Let J be a subset of {I, ..., M} with IJI elements. Set

If dim UJ<IJI, then there exists a non-zero sequence S=(SI, ..·,SM) for
which sJ = 0 all j $ J, and

M

L Sj! v(x)dx=O
J= 1 AJ

for all VE UJ'

Proof Let U 1, ... , U r be a basis for UJ. Set

i = 1, ..., r; j E J.

Since r< IJI, there exists an s= (SI, ..., sM);60 with Sj=O, UJ, which
satisfies

Thus

M

L ciJSj=O,
J= I

i = 1, ..., r.

for all VE UJ. I
As an immediate consequence of this lemma we have

COROLLARY 2. Let the assumptions of Lemma 1 hold with some u, J, Ub

and s. If v E UJ and sjv(x) ~ 0 for all x E Aj and j = 1, ..., M, then sjv(x) = 0
for all xEAj and allj= 1, ..., M.

We shall have frequent recourse to the above corollary with
J = {l, ..., M}. As such we formalize the process.

DEFINITION 7. Let UE Un/{O}, K/Z(u) = U~l Ai' A non-zero sequence
S = (s l' ... , SM) is said to be an annihilator for U if for every function v E U(u)
with SiV ~ 0 on Ai, i = 1, ..., M, it follows that SiV = 0 on Ai, i = 1, ..., M.
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If M(u) > n, then setting J = {1, ..., M}, it follows from Lemma 1 and
Corollary 2 that there exists an annihilator for u.

Let uEUnj{O}, KjZ(u)=U~IA;, and assume S=(SI"",SM) is an
annihilator for u. Set

U(u, s)= {v: VE U(u), s;v~O on Ai, i= 1, ..., M}.

Let I' denote the set of indices in {l, ..., M} for which some v E U(u, s) does
not identically vanish on Ai'

Set

KS=Kjint (U A;).
I fl'

Note that K S = int K S
, and I" does not include indices for which S; # O. The

important property to remember about U(u, s) is that if v E U(u) and
S;V ~ 0 on A; where S; # 0, then v E U(u, s).

Assume that we are given a UE Unj{O} with M(u) > n. (Because of the
induction hypothesis this is the only case of interest.) There then exists an
annihilator s for u, and by Property A, U(u, s) # 0. Furthermore,
u rt U(u, s). Thus 1~ dim U(u, s) < n. Let d denote the minimal value for
dimU(u,s) as we vary over all uEUnj{O} with M(u»n, and all
annihilators s for u.

LEMMA 3. If M( u) > n, s is an annihilator for u, and dim U( u, s) = d,
then

IKSjZ(u)1 ~ d.

Proof Assume IKSjZ(u)1 > d. Now KjZ(u) = U~ I A; and KSjZ(u) =
U; E l' A; with II"1> d. We apply Lemma 1 with J = I" to obtain a non-zero
sequence t=(tl, ...,tM ), with t;=O for irtI', such that if VEU(U,S) and
t;v ~ 0 on A;, all i, then t;v = 0 on Ai> all i. Change t; for i rt I" by setting
t; = S; thereon. It is easily seen that this new t is an annihilator for u and
U(u, t) ¥ U(u, s) since t;#O for at least one iEI", i.e., II ¥ I'. This
contradicts the minimality of dim U(u, s). I

From Lemma 3, we have that if M(u) > nand s is an annihilator for u
with dim U(u, s) = d, then IKSjZ(u)1 ~ d. Among all such u and s, choose
u* and s with IKSjZ(u*)1 maximal.

LEMMA 4. Let u* and s be as above. IfuE U(u*, s), then

1KSjZ(u* - u)1 ~ IKSjZ(u*)I.
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Proof Set v=u*-u, and assume IKSjZ(v)I>IKSjZ(u*)I. Now v=u*
on Ai for all i¢I'. Let KSjZ(V)=UjEJBj. Thus KjZ(v)=(UjEJBj)u
(UiO' AJ Since IKSjZ(v)1 > IKSjZ(u*)1 then M(v) > n. We define a
non-zero annihilator t for v by setting t,=Si for i¢I' and tj=O for JEJ.
Clearly t is an annihilator for v and I' is a subset of J. Furthermore, by the
minimality property of dim U(u*, s), it follows that U(v, t) = U(u*, s). Thus
u E U(v, t).

Assume I' i= J. There then exists a k E J such that every element of U( v, t)
vanishes identically on Bk • In particular u = 0 on Bk • Since v vanishes on
the relative boundary of Bk> it follows that u* vanishes on the relative
boundary of Bk • From the definition of the Ai' we see that Bk must contain
some A i with i E IS. Thus every element of U( v, t) vanishes identically on
this Ai' i E 1', which contradicts the fact that U(v, t) = U(u*, s). Hence
I'=J.

Because I'=J we have K'=K s and KSjZ(v)=K'jZ(v). Since
dim U(v, t) = dim U(u*, s) = d, the maximality of IKSjZ(u*)1 implies that

IKSjZ(v)1 = IK'jZ(v)1 ~ IKSjZ(u*)I,

proving the lemma. I
Let u* and s be as above. From Property A there exists a v E U(u*) such

that SiV~O on Ai, i¢I', and u*v~O on A" iEI'. Thus, in particular,
v E U(u*, s), which implies v = 0 on A" i ¢ 1'.

LEMMA 5. Let u*, s, and v be as above. Then for each i E I' there exists
an rx, ~ 0 such that rxju* = v on A,.

Proof We first show that if xEAJ1Aj for some ii=j, then v(x)=O.
Suppose to the contrary that there exists an i, j; i i= j; i, j E I' (necessarily),
and an xoEA,nAj such that v(xo)i=O. Let YiEAi' iEI'. Since 11'1 ~d,

then for b sufficiently small and positive, Ibv(Y,)1 < lu*(y;)l. From
Lemma 4, IKSjZ(u*-bv)I~IKSjZ(u*)I. We contradict this inequality by
showing that each of the points {y I LEI' and X o are in distinct connected
components of KSjZ(u* - bv).

Let Gi=sgnu* on Ai' iEI'. Then GiV~O on Ai, iEI'. Since
Gj(u*-bv)(y;»O, while Gi(u*-bv)(x)= -Gi<5V(X)~O on the relative
boundary of Ai, it follows that the relatively open connected component of
KjZ(u*-bv) containing Yi is itself contained in Ai' In particular the
components containing different y;'s are distinct and disjoint from the
boundaries of the A;'s. Since X oE iJA i and (u* - bv )(xo) = -bv(xo) i= 0, X o
belongs to still another component of K'jZ(u* - bv), which is a contra­
diction to Lemma 4.

Assume now that v is not proportional to u* on AJ for some j E 1'. We
can choose rx > 0 such that rxu* - v i= 0 on Ai for every i E 1', and rxu* - v
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takes both positive and negative values on Ajo Since v vanishes on the
relative boundary of Ai for each iE/", this implies that IKSjZ(lXu*-v)1 >
IKSjZ(u*)I, contradicting Lemma 4. I

On the basis of all of the above, we may assume that there exists a
u* E Unj{O} with M = M(u*) > dim U(u*) = n, associated Ai, i = 1, ..., M,
and a VE U(u*)j{O} which satisfies the following:

(i) V=lXiU* on Ai, i= 1, ..., M,

(ii) lX i ~ 0 and all the lX i are zero except for at most some d < n.

LEMMA 6. Theorem 0 holds.

Proof The IX/S take on the distinct values f3j' j = 1, ..., k; 2 ~ k ~ n.
Assume that f3j is taken on nj times, j= 1, ..., k. Thus :2:;= I nj = M> n.

Since f3 ju* - v vanishes identically on some Ai> we have u* ¢: U(f3ju* - v).
Thus dim U(f3ju* - v) < n and by the induction hypothesis

M - n
J
= IKjZ(f3ju* - v)1 ~ dim U((3ju* - v),

j = 1, ..., k. This immediately implies that M cannot be infinite, since all but
one nj is bounded by d.

We claim that dim(n;= I U(f3ju* - v)) > O. We prove this fact by showing
by induction that dimmj=1 U((3ju*-v))>M-(n l + ... +nr) for
r = 2, ..., k. For r = k this gives the desired result. For r = 2,

dim( U(f31 u* - v) n U((32U* - v)) = dim( U((31 u* - v)) + dim( U(f32U* - v))

- dim(U((3lu* - v) + U(f32U* - v))

~(M-ntl+(M-n2)-n

>M-(n l +n2)

since dim( U(f31 u* - v) + U(f3 2 u* - v)) ~ n < M. Assume the result holds for
r - 1, 3~ r ~ k. Then

dim (01 U(f3ju* - V)) = dim (Oil U(f3ju* - V)) +dim( U(f3ru* - v))

-dim ((0: U(f3ju*-V))+(U(f3rU*-V)))

>(M-(nl + '" +nr_tl)+(M-nr)-n

>M-(N I + ... +nr )

since dim((nj:: U(f3ju* - v)) + (U(f3ru* - v)) ~ n < M. Thus dim
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(nJ~1 U({Jju*-v»>O. But if UEnJ~1 U({J,u*-vj, then it is easily seen
that u=o. Thus dim(nJ~1 U({Jju*-v»)=O. This contradiction proves
Theorem D. I

4. PROOF OF THEOREM E.

In the proof of Theorem E we shall make use of the following
Proposition.

PROPOSITION 7. Let K c R m
, K compact, K = int K. Let W =

span{WI' ..., w,} be an r-dimensional subspace of C(K). Assume that for all
WE w, IKjZ(w)1 ~ M, M finite. Then there exists a w* E W of the form

,
W*=W 1 + L atw,

i= 2

such that if WE W satisfies

(a) w(x)=O a.e. on Z(w*),

(b) w(x)(sgn w*(x»= Iw(x)1 for all XEKIZ(w*),

then w = OlW* for some Ol ~ o.

Remark. Note that in the statement of the proposition, the coefficient
of WI is 1.

To prove the proposition, we use the following lemmas. We always
assume that the conditions of the proposition hold.

LEMMA 8. Assume gl' ..., gkE Wj{O}, and int Z(g;) ~ int Z(g;+ d,
i= 1, ..., k-1. Then gl' ..., gk are linearly independent.

Proof We may assume that gl' ..., gk-l are linearly independent and
g I' ... , gk are linearly dependent. Thus

k - I

gk = L a;g;.
;=1

On int Z(gk), L~==-Il a;g; = O. Thus on int Z( gz), 0 = L~==-/ a;g; = a l gl' But
there exists an xIEintZ(gz)jintZ(gd for which gl(xd#O. Thus al=O.
We continue in this manner to obtain a I = ... = ak _ I = 0, a contradic­
tion. I
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Set

and

v= {I\': 001' E V for some IY. =F O}.

LEMMA 9. There exists a w* E V which satisfies the following:

If WE V and int Z( w) :2 int Z( w*), then int Z( w) = int Z( w*),
and IKjZ(w)1 ::::; IKjZ(w*)I.

63

Proof Choose v I E V. If there exists a V 2 E V for which
int Z(vJl ~ int Z(v 2 ), then replace VI by V2' Continue this process. Since
V <;; Wand dim W = r, it follows from Lemma 8 that this process stops
after at most r steps. Thus there exists a }j:' E V such that if WE V, and
int Z(w):2 int Z(i'), then int Z(w) = int Z(i').

Among all WE V satisfying int Z(w) = int Z(W), choose w* E V for which
IKjZ(w*)1 is maximal. Such a choice is possible since IKjZ(w)1 is uniformly
bounded by M for all w E W. I

We shall eventually prove that the w* E V of Lemma 9 satisfies the claim
of the proposition.

Let KjZ(w*) = U7= I Ai' where the Ai are relatively open, connected sets
in K, k::::; M. Let ei denote the sign of w* on Ai' i = 1, ..., k. Assume, con­
trary to the claim of the proposition, that there exists aWE Wj {O} for
which w =F IY.w* for any IY. > 0 and

(a) w(x) = 0 a.e. on Z(w*),

(b) eiw(x)~O, all xEA i , i= 1, ..., k.

LEMMA 10. Let wand w* be as above. For all x E Ai (\ Al ,

i, j E { 1, ..., k }; i =F j, we have w(x) = O.

The proof of Lemma 10 follows the proof of Lemma 5. The freedom in
the choice of () small and positive in the proof of Lemma 5 allows us to
assume that w* - {)w E V.

Proof of Proposition 7. Let w* and w be as above and assume that
w =F IY.w* for any IY. ~ O. We divide the proof of the proposition into two
cases.

Case I. There exists an Ai, i E {1, ..., k}, as above, for which w =F IY.W*
on Ai for any IY.~O.

640'53'1-5
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In this case (as in the proof of Lemma 5) there exist x I , X 2 E A j and f3 > 0
for which (w*-f3w)(xd·(w*-f3w)(x 2 )<0. f3 may be perturbed slightly
and the strict inequality maintained. As such we may assume that
w* - f3w E V. If w* - f3w vanishes identically on some Aj , j E {l, ..., k}, then
we contradict Lemma 9 since then int Z(w* - f3w) ~ int Z(w*). Otherwise
we contradict Lemma 9 because IK/Z(w* - f3w)1 > IK/Z(w*)I.

Case II. On each A j , w = rJ., w*, rJ. j ~ 0, i = 1, ..., k.
If all the rJ.; are equal, then w = rJ.w*. Thus assume that not all the rJ., are

equal. Let rJ. j , rJ.j ~ 0, rJ. j #- rJ.r Then either rJ. j w* - It' E Vor rJ.j w* - IV E V. But
int Z(rJ.w* - w) ~ int Z(w*) for !J. = rJ. j , rJ.j • This contradicts Lemma 9. I

We are now in a position to prove Theorem E.

Proof of Theorem E. Assume IK/Z( Un)1 ~ 2. From Theorem 0 we have
IK/Z(Un)1 ~n. Thus K/Z(Un)= U~~ I A" where 2~k~n, and the A j are
the relatively open, connected components of K/Z( Un)' Set B = A"
C= U~~2 A j • Let

dim Vm=m~n

dim W,=r~n.

Now, m, r ~ 1 and m + r ~ n. Our aim is to prove that m + r = n. This is
equivalent to the claim of Theorem E. Assume therefore that m + r > n, and
set / = m + r - n > O. We shall contradict Property A.

Let ¢/: Un --+ Vm and ¢/': Un --+ W, be the restriction maps. Clearly ¢/ and
¢/' are onto hence dim ker ¢/ = n - m = r - / and dim ker ¢/' = n - r = m -l.
Also ker¢/nkerrP"={O} so we can choose a basis Ul'''''U" V'+I'oo"V m ,

W'+I""'W, for Un such that V'+l, ... ,t'm span ker¢/' and W'+I'''''W,

span ker rP'.
For UE Un' set u'=¢/(U)=UIBE Vm and u"=ulcE W,. Then

W { """ If},=span u" ...,U"I~"+I, ...,I\',.

The conditions of Proposition 7 hold on E. There therefore exists a
function v* E Un of the form

, m

v*=u, + L a;*u j + L btv;
l=2 i=/+ 1

such that if v E Un satisfies

(i) v(x)=O a.e. on ZJj(v*)

(ii) v(x)(sgnv*(x))=lv(x)1 for all xEE/ZJj(v*)
(1)



UNIQUENESS IN L [-APPROXIMATION 65

then there exists an IX ~ 0 such that (V -IXV*)(X) = 0 on E. In other words,
v -IXV* Eker ¢/.

Set u* = u, + L~=2 aj*u j, and W= span{u*, 11',+ [, •••, wr }. We now apply
Proposition 7 to C and W. There exists a function 11'* E W of the form

r

11'* = u* + I eiM'j
j~'+ [

such that if 11' E W satisfies

(i) W(X) =0 a.e. on Zc(w*)

(ii) w(x)(sgn w*(x)) = Iw(x)1 for all XE C/Zc(w*)
(2)

then there exists a f3 ~ 0 such that 11' - f3w* = 0 on C, i.e., 11' - f3w* Eker ¢/'.
Set ii=u*+L7'=,+,bivj+L~=,+,ej*wj. Then iiIB=v*IB and

iii c = 11'* Ic. As a consequence of Property A and the construction of Band
C, there exists a function UE Un/{O} for which

(i) u(x)=O a.e. on Z(ii)

(ii) u(x)(sgn ii(x))~O on B (3)

(iii) u(x)(sgn ii(x)) ~ 0 on C.

From (1) and (3) it follows (since iiIB=v*IB) that u-lXiiEker~' for
some IX ~ o. Since ii E Wand ker~' < W we have u E W. Then by (2) and
(3), u - f3ii Eker~" for some f3 ~ O. Thus (IX - f3)ii Eker f + ker f'. Since
u -# 0 and ker f n ker ¢/' = 0 we have IX -# 0 and/or f3 -# 0, hence IX - f3 > o. It
follows that ii E ker ~' + ker r, which contradicts our construction of ii. I
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